skip to main content


Search for: All records

Creators/Authors contains: "Gomez, Maria A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Proton conduction is an important property for fuel cell electrolytes. The search for molecular details on proton transport is an ongoing quest. Here, we show that in hydrated yttrium doped barium zirconate using X-ray and neutron diffraction that protons tend to localize near the dopant yttrium as a conjugated superstructure. The proton jump time measured using quasi-elastic neutron scattering follows the Holstein-Samgin polaron model, revealing that proton hopping is weakly coupled to the high-frequency O-H stretching motion, but strongly coupled to low-frequency lattice phonons. The ratio of the proton polaron effective mass, m * , and the proton mass is m * / m  = 2, when coupled to the Zr-O stretching mode, giving experimental evidence of proton pairing in perovskites, as a result of proton-phonon coupling. Possible pathways of a proton pair are provided through Nudge Elastic Band calculations. The pairing of protons, when jumping, is discussed in context of a cooperative protonic charge transport process. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Inspired by significant local distortions found near vacancies in a neutron pair distribution function analysis study (G. King et al.,Inorg. Chem.2012, 51, 13060) of Sr2MSbO5.5(M = Ca and Sr), this computational study finds minimum‐energy structures with these and related distortions using density functional theory (DFT) with the Perdew‐Burke‐Ernzerhof (PBE) functional as implemented in the Vienna Ab Initio Simulations Package (VASP) (G. Kresse and J. Furthmüller,Phys. Rev. B, 1996, 54, 11169; G. Kresse and J. Hafner,Phys. Rev. B, 1993, 47, 558; G. Kresse and J. Furthmüller,Comput. Mater. Sci., 1996, 6, 15). All structures were optimized using the conjugate gradient method. The global minima found for both systems featured trigonal bipyramid SbO5structures and edge sharing with M‐centered polyhedra. However, while calcium ions occupied full and partial octahedra, the larger strontium ions were more commonly found in full and partial pentagonal bipyramids. Molecular dynamics with velocity rescaling at1200K revealed movements of the oxygen vacancy via polyhedral rotations. This work highlights the need to consider both square pyramid to trigonal bipyramid rearrangements around small ions and rotational polyhedral movements in simulating oxygen vacancy conduction in oxygen‐deficient double perovskites.

     
    more » « less